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Abstract: Image interpolation occurs in all digital photos at some stage. It happens anytime you resize or remap  your 

image. Many researchers are working on improving image resolutions with different algorithms. When a low-resolution 

image is down sampled from the corresponding high-resolution image without blurring, the reconstruction becomes an 

image interpolation problem. Hence, this is a way to define the linear relationship among side by pixels to reconstruct a 

high-resolution image from a low-resolution image. In low rank matrix completion and recovery, a process for 

performing single-image super resolution is initiated by formulating the reconstruction as the recovery of a low-rank 

matrix. Besides that this method can be utilized to process noisy data. In this paper, we have studied and reviewed 

different interpolation methods. 
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I.INTRODUCTION 

 

Researchers are working on enhancing image resolutions 

with distinctive algorithms. These approaches are 

supposed towards achieving optimized level of resolution 

without damaging original image. Recently, many 

interpolation algorithms have appeared for SISR, which 

includes the classical bilinear, bicubic interpolation and 

edge-guided interpolation methods. Although nearly no 

traditional interpolation methods can completely 

accommodate correlations in image edge pixels, and 

consequently those methods can also bring about a few 

ringing artifacts and blurring at the edge of the 

reconstructed HR image. Therefore, because the linear 

correlations are fixed and predefined in these techniques, 

they cannot sufficiently model the textures in natural 

images. In our project we proposed a new method to solve 

the SISR problem based on the recently developed 

technique of low-rank matrix completion, which 

determines the order of the linear model adaptively and 

implicitly. The linear relationship among neighboring 

pixels was determined implicitly and adaptively by 

exploring the low-rank properties of the augmented 

matrix. The low rank of the augmented matrix is due to the 

local structural similarity of the images. In other words, 

the centre pixels can be sufficiently represented by the 8-

connected neighboring pixels or a subset of the 8-

connected neighboring pixels. However, due to the 

presence of noise and random perturbations, some entries 

in the augmented matrix are corrupted. We therefore 

investigate the SISR problem under this condition by 

using the recently developed low-rank matrix recovery 

theory. When a low-resolution image is down sampled 

from the corresponding high-resolution image without 

blurring, i.e., the blurring kernel is the Dirac delta 

function, the reconstruction becomes an image 

interpolation problem. Hence, this is a way to define the  

 

 

linear relationship among side by pixels to reconstruct a 

high-resolution image from a low-resolution image. This 

project seeks an efficient method to determine the local 

order of the linear model .based on theory of low-rank 

matrix completion and recovery, a process for performing 

single-image super resolution is initiated by formulating 

the reconstruction as the recovery of a low-rank matrix. 

Besides that the proposed method can be utilized to 

process noisy data and random perturbations effectively. 

 

II.LITERATURE SURVEY 

 

Interpolation is a method of constructing new data points 

within the range of a discrete set of known data points. 

Interpolation is the process of determining the values of a 

function at positions lying between its samples. It achieves 

this process by fitting a continuous function through the 

discrete input samples. This permits input values to be 

evaluated at arbitrary positions in the input, not just those 

defined at the sample points. While sampling generates an 

infinite bandwidth signal from one that is band-limited, 

interpolation plays an opposite role: it reduces the 

bandwidth of a signal by applying a low-pass filter to the 

discrete signal. That is, interpolation reconstructs the 

signal lost in the sampling process by smoothing the data 

samples with an interpolation function. 

 

A. Interpolation through low rank matrix 

Feilong Cao, Miaomiao Cai. [1], proposed an efficient 

method to decide the local order of the linear model 

implicitly. According to the theory of low-rank matrix 

completion and recovery, a method for performing single-

image super resolution is proposed by formulating the 

reconstruction as the recovery of a low-rank matrix, which 

can be solved by the augmented Lagrange multiplier 
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method. Similarly, the proposed approach can be used to 

deal with noisy data and random perturbations robustly. 

The proposed technique aims to explore the local linear 

relationship among neighboring pixels. The proposed 

approach can implicitly determine the most efficient order 

of the linear model. Low rank matrix is concerned with 

missing pixels around the central pixel due to random 

noise. The center pixels can be sufficiently represented by 

the 8-connected neighboring pixels or a subset of the 8-

connected neighboring pixels. However, due to the 

presence of noise and random perturbations, some entries 

in the augmented matrix are corrupted. In this low matrix 

we are interpolating the missing pixels with central pixel. 

Low-rank matrix recovery theory is a new signal 

processing method which was proposed in the framework 

of compressed sensing theory. Here, the SISR problem is 

recast as that of recovering and completing a low-rank 

augmented matrix (MCR) in the presence of random 

perturbations and noise .This problem can be expressed as 

a rank minimization problem, which can be solved by the 

augmented Lagrange multiplier method (ALM). Let Y be 

an input LR image which is a down sampled version of the 

HR image by a down sampling factor, and let X be the HR 

image to be estimated from Y. Let xi∈ X and yi∈ Y denote 

the pixels of X and Y respectively. The neighbors of xi in 

X and yi in Y can be written as xti and yti respectively, 

where t = 1, 2, . . 8. Then, for the pixels in the LR image 

Y, yi∈ Y implies yi∈ X. One can also write an HR pixel 

xias yi when it is in the LR image. 

 

 
Fig.1 Low resolution image pixels 

 

The solid dots are the LR image pixels, the shaded dots are 

the missing pixels to be estimated in the first phase, and 

the empty dots are the missing pixels to be estimated in the 

second phase. This method involves interpolating the 

missing pixels in X in two phases. A schematic diagram of 

the proposed method is shown in Fig.1, in which there are 

three kinds of pixels: solid dots, shaded dots, and empty 

dots. The solid dots are the known LR pixels, and the 

shaded and empty dots are the missing pixels. To provide 

enough information to estimate the missing pixels, 

interpolation is done in two phases. In the first phase, the 

bilinear interpolation method is first used to obtain initial 

estimates of the empty dots. Then the solid dots and the 

empty dots are combined to recover the shaded dots using 

low-rank matrix recovery theory. In the second phase, the 

final values of the empty dots are revised using low-rank 

matrix recovery theory. The relationship among 

neighboring pixels is an important piece of information for 

estimating missing pixels. The concept of 8-connected 

neighbors of pixels is illustrated in Fig. 2. This concept 

also illustrates that the spatial configuration of known and 

missing pixels is involved in the two phases. For a missing 

pixel xi∈ X, some of its 8-connected neighbors are known 

LR pixels. In contrast, for a pixel xi∈Y, some of its 8-

connected neighbors are missing pixels in X. A local 

window W is defined as an n × n image patch, and for 

each xi∈ W, it can be sufficiently expressed by the linear 

combination of its 8-connected neighboring pixels x
t
i (t = 

1, 2, . . . ,8), namely 

 

 
Fig.2 connected neighbours of pixels 

 

 
 

Where αi(i = 1, 2, . . . , 8) are the linear representation 

coefficients. 

The system architecture for low rank matrix completion 

and recovery is shown in Fig. 3. Input image is taken from 

database of 50 images. Pre-processing of an image 

includes resizing of an image. The basic condition for any 

image processing algorithm is that images must be of same 

size for processing purpose. Hence in order to process out 

any image with respective algorithm we resize the image. 

The size can be fixed like (256*256). 

 

 
Fig. 3 Image interpolation via low rank matrix and 

recovery 

 

Image de noising is an important image processing task, 

both as a process itself, and as a component in other 

processes. Many ways to de noise an image or a set of data 

exists. The main property of a good image denoising 

model is that it will remove noise while preserving edges. 

Median filter is used here which does the work of 

smoothening of image. A color image must first be 

transformed from RGB color space to YCbCr color space. 
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The proposed method will be applied to the Y channel 

only. As for the color channels (Cb, Cr), the bicubic 

interpolation method is used to up-sample them. In the Y 

channel, the proposed low-rank matrix recovery method is 

used. Low matrix is concerned with missing pixels around 

the central pixel due to random noise.  The center pixels 

can be sufficiently represented by the 8-connected 

neighboring pixels or a subset of the 8-connected 

neighboring pixels. However, due to the presence of noise 

and random perturbations, some entries in the augmented 

matrix are corrupted. In this low matrix we are 

interpolating the missing pixels with central pixel 

 

B. Bilinear interpolation method 

H. Kim., S. Park [8], proposed Bilinear Interpolation 

which determines the grey level value from the weighted 

average of the four closest pixels to the specified input 

coordinates, and assigns that value to the output 

coordinates. First, two linear interpolations are performed 

in one direction (horizontally) and then one more linear 

interpolation is performed in the perpendicular direction 

(vertically). For one-dimension Linear Interpolation, the 

number of grid points needed to evaluate the interpolation 

function is two. For Bilinear Interpolation (linear 

interpolation in two dimensions), the number of grid 

points needed to evaluate the interpolation function is four. 

 

 
Fig. 4 Image interpolation by Bilinear Interpolation 

 

The system architecture for bilinear interpolation is shown 

in Fig. 4. In this method interpolation method is applied to 

RGB component of image separately.  

 

C. Cubic Convolution interpolation method  

Robert G. Keys [3] proposed Cubic convolution a one-

dimensional interpolation function is derived in this paper. 

A separable extension of this algorithm to two dimensions 

is applied to image data. The cubic convolution 

interpolation function is derived from a set of conditions 

imposed on the interpolation kernel. The cubic 

convolution interpolation kernel is composed of piecewise 

cubic polynomials defined on the unit subintervals 

between - 2 and +2 .The kernel is required to be 

symmetric, continuous, and have a continuous first 

derivative. It is further required for the interpolation kernel 

to be zero for all nonzero integers and one when its 

argument is zero. This condition has an important 

computational significance-namely, that the interpolation 

coefficients become simply the sampled data points. 

Finally, the cubic convolution interpolation function must 

agree with the Taylor series expansion of the function 

being interpolated for as many terms as possible. The 

interpolation kernel derived from these conditions is 

unique and results in a third-order approximation.  

 

D. Super Resolution 

Emmanuel J. Candes [4] explains the recovery of a 

superposition of point sources from noisy band limited 

data. In the fewest possible words, they only have 

information about the spectrum of an object in the low- 

frequency band [-flo, flo]and seek to obtain a higher 

resolution estimate by extrapolating the spectrum up to a 

frequency fhi > flo. They show that as long as the sources 

are separated by 2/flo , solving a simple convex program 

produces a stable estimate in the sense that the 

approximation error between the higher-resolution 

reconstruction and the truth is proportional to the noise 

level times the square of the super-resolution factor (SRF) 

fhi > flo. 

 

III.CONCLUSION 

 

In this paper, single image super resolution method of 

interpolation aims to explore the local linear relationship 

among neighboring pixels is proposed. By considering the 

low-rank property of the augmented matrix, the super-

resolution problem has been reformulated as the recovery 

of a low-rank matrix from missing and corrupted 

observations, which can be solved efficiently using the 

ALM method.The proposed low rank matrix method is 

compared with other interpolation methods. 
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